Science on the Fly

Autonomous Science for Rover Traverse

David Wettergreen
The Robotics Institute
Carnegie Mellon University

Preview

Motivation and Objectives Technology Research Field Validation

Science Autonomy

Science Autonomy is NOT to replace scientists with robots

Science Autonomy is to improve the quality and quantity of science data return from exploration missions

Motivation for Science Autonomy

Exploration methods with all decision making on Earth are increasingly difficult to sustain

Factors motivating greater autonomy:

Mission duration

Operations costs

Instrument placement and operation

Verifying observations

Sampling and drilling control

Command complexity/contingencies

Communication bandwidth and data volume

Science Autonomy Motivation

NEXT Space Robotics Study

Assessment the current and projected state-of-the-art in space robotics including surface exploration

Challenges relative to science autonomy:

Minor	Moderate	<u>Major</u>
Obstacle Detection	Map Building	Localization
Obstacle Avoidance	Health Monitoring	Terrain Detection
Path Execution	Path Planning	Mission Planning
Coverage Planning	Resource Planning	Exploration Planning
		Science Data
		Understanding

Science Autonomy

Science on the Fly Motivation

Geology on the Fly

During 1997 Atacama Desert Trek an experiment in exploration method was conducted:

- Maintain rover in motion 75% of the time (science conducted during traverse)
- Traverse 1.5km (supervised teleoperation)
- Pause at 10 sites for detailed observation

Outcrop with fossilized stromatolite detected

Science on the Fly

Science autonomy during rover traverse

Research:

Feature detection (similar, dissimilar, and unique)

Feature classification and evaluation (significance)

Science-informed exploration

Science autonomy architecture

Focus on developing techniques and validating in ground-truthed rover experiments

Nominal Traverse Science on the Fly

On-the-Fly Observations

Feature Detection and Classification

Rocks and soils

- Size, color (white rocks), roundness, sphericity, mineral composition (carbonates), spectra, fluorescence(chlorophyll signature), etc.
- Similarity, dissimilarity, uniqueness

Regions

- Texture, color distribution, size distribution, statistical measures, etc.
- Boundary localization

Rock Detection Example

Scene Image

Difference Operator

Threshold

Smoothing Operator

Segmentation

Rocks

Illustrative example not necessarily an effective algorithm

Region Segmentation Example

Technical Approach and Metrics

Feature Detection

Implement several candidate algorithms

Apply each algorithm to image set

Analyze detection performance (rate and errors)

Feature Classification

Implement classification approach (Baysian)

Apply to detected features

Compare to manual classification

Science Observer

Observation Map - Rocks

Observation Map - Soils

Observation Map - Regions

Region Characterization

Soil Unit Distribution

On-the-Fly Planning

Science Planner

Science Autonomy Architecture

Deep Integration

Science observation is closely related to navigational observation and can be optimized

Science planning is intimately related to planning for locomotion and resources

Architecture - Navigation

Architecture - Planning and Execution

Architecture - Science Autonomy

Validation and Verification

Two aspects:

 Validate detection and categorization perform correctly in the relevant domain

- Verify that science-on-the-fly observation and planning improves science productivity
- Measured by comparison to control experiment with no science autonomy
- Quantify of useful observations and quality of science interpretation

Experimentation

Design rover traverse

Following Atacama operations concept

Possibly cross geologic boundary

Complete science goals

Observe environment and detect features
Categorize features and compute statistics
Compare automatic versus manual analysis
(validate)

Field Experimentation

Design rover traverse Execute nominally and make science observations

Repeat path with Science
Observer detecting and
Science Planner
functioning with the
Mission Planner
(to consider resources) ar

(to consider resources) and modifying path to collect additional data

Measure

Observations added

Observations lost

Observation quality (scientist analysis)

Field Investigation

Formulate habitat hypotheses

What constitutes a viable micro-habitat?

Important properties may include sunlight and radiation, slope exposures, wind, moisture, and geologic composition of rocks at

composition of rocks and sediments.

Identify distinguishing characteristics

Can rover autonomously survey habitats?

Developing Science on the Fly

Science on the Fly

Science autonomy during rover traverse

Technology

Feature detection

Feature classification and evaluation

Science-informed exploration Science autonomy architecture

Focus on developing techniques and validating in field experiments

Nominal Traverse Science on the Fly

Extra Motivation

Improving Productivity

Growing Science Data Volume

Focused Science Missions

Focused Investigation
Single Measurements
Flybys and Landers

Venera Lander

Discovery Science Missions

Broad Investigation

Multiple Repeated

Measurements

Orbiters and Rovers

Lunar Prospector

NASA ASTEP Science on the Fly

MSL

Comprehensive Science Missions

Global Exploration
Regional, Seasonal
Measurements
Long-duration Orbiters
and Rovers

Increasing Capability

Taxonomy

Exploration Strategy Sample Selection Criteria Sample Detection Sample Acquisition Data Validation Data Verification **Science Analysis Science Interpretation Science Discovery**

Increasing Complexity

Taxonomy

Exploration Strategy	Static survey, fixed coverage pattern (grid, spiral, random) Dynamic survey, variable coverage pattern, feature following Directed search, feature-based Opportunistic observation Opportunistic investigation
Sample Selection Criteria	Inquiry-independent (fixed by non-science constraints) Inquiry-nonspecific Pattern scientist specified Pattern derived from scene (automatic classification) Pattern generated (autonomous inquiry)
Sample Detection	Select search area Identify pattern Reach position/time/survey constraint Evaluate detection likelihood
Sample Acquisition	Sample localization/feature tracking Sample approach Instrument deployment Sample collection Sample processing Sample curation Sample disposal
Data Validation	Calibrate sensors Data quality assurance Dynamic range and sensitivity of measurements
Data Verification	Effective experimental procedure Clear sample naming convention Comparison to sample specification Correct feature likelihood
Science Analysis	Filtering/enhancement Data reduction (eliminating data) Data compression Statistical analysis: categorize, diversity, priority
Science Interpretation	Feature detection Sample classification Probabilistic analysis
Science Discovery	Distinguish uniqueness Evaluate significance Generate Hypothesis

Extra Robots

Volcanic Gas Measurement

Goal: Measure gasses to determine activity, distribution and concentration

Challenges

Locomotion: dexterity in extreme terrain

Behavior: sensing and adapting to terrain

Interface: conveying status to scientists

Geologic Measurement and Sampling

Goal: Autonomous geological sampling

Challenges

Autonomy: minimize command cycles

Visual servoing: changing appearance of target

Reliability: knowing when it is not working

Marsokhod

Autonomous Target Approach

Visual-servoing as autonomous behavior for data acquisition

- Motion correlator compares left image with prior template to determine target direction
- Motion correlation drives fast pantilt
- Range correlator compares left and right images to determine pixel disparity and range to target
- Range and motion correlation provide input for robot heading and velocity (guidance)

Carnegie Mellon

Regional Geologic Characterization

Goal: Long-distance desert exploration

Challenges

Communication: limited bandwidth

Duration: practice of sustained operation

Nomad

Detection: sensing fidelity capable of scientific discovery

Long-duration Exploration

Goal: Robotic navigation with reasoning about resources for sustained exploration

Perpetual operation through balancing with power generation and consumption

Long-Duration Exploration Experiment

Power

Followed resource profile and schedule to complete traverse with batteries fully charged

Terrain

7% (max 34%) obstacle density

Operation

6.1km, No faults, Autonomy 90%

9.1km, One fault, Autonomy 50%

Hyperion on Devon Island, Canada

Antarctic Meteorite Search

Goal: Automatic detection and classification of rocks on stranding surfaces in the Antarctic where meteorites tend to concentrate

Rock Detection and Classification

Visual Servoing of Instruments

Meteorite Discovery

2500 m² searched in 16 hours, 42 samples classified

1 rock / 10 m², time to target: 45 min

1-2 rocks / m², time to target: 16 min

